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Abstract. The thermal Green functions of the quantum-mechanical harmonic oscillator are constructed
within the framework of nonextensive statistical mechanics with normalized q-expectation values. For the
Tsallis index q greater than unity, these functions are found to be expressed analytically in terms of
the Hurwitz zeta function. It is found that influence of the nonextensivity on the time-ordered thermal
propagator is relevant only at the “on-shell” states. In particular, the finite-temperature contribution to
the thermal propagator becomes enhanced for the strong nonextensivity.

PACS. 05.30.-d Quantum statistical mechanics

Thermal field theory is attracting continuous interest in
various research areas including solid state physics, par-
ticle physics, and cosmology. Among others, quark-gluon
plasma (i.e., quantum chromodynamics at finite temper-
ature) and quantum processes in the early Universe may
be thought of as typical examples. There is a common
important point behind them: the systems treated there
include long-range interactions in themselves. In the for-
mer example, there is no natural mechanism which shields
the chromomagnetic force, in contrast to the chromoelec-
tric component [1]. In the latter one, quantum fields are
put under influence of gravitational interaction [2]. Both
of them are nonextensive systems.

Nonextensivity is also relevant when a system has
long-time memory, (multi)fractal configuration, or quan-
tum group structure. A feature of a nonextensive sys-
tem is that the total internal energy does not become
proportional to the number of microscopic elements of
the system in the thermodynamic limit. To treat such
a system thermodynamically, suitable generalization of
Boltzmann-Gibbs statistical mechanics seems to be es-
sential [3]. Nowadays a possible approach to this prob-
lem is known. It was initiated and developed by Tsallis.
This formalism [4,5], referred to as nonextensive statistical
mechanics (NSM), and related mathematical frameworks
have been successfully applied to, e.g., the Ising model
with long-range interactions [6], astrophysical and cosmo-
logical problems [7], Lévy-type random walks [8], the trav-
eling salesman problem [9], studies of biomolecules [10],
and quantum groups [11]. (A comprehensive list of refer-
ences is currently available at URL [12].)

Unfortunately, nonextensive generalization of thermal
field theory is still far out of reach, mainly due to math-
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ematical difficulty of treating infinite degrees of freedom.
One should however recall that within the framework of
Boltzmann-Gibbs statistical mechanics some important
physical properties of thermal field theory can still be
found in dynamics of a single quantum-mechanical par-
ticle in the heat bath: e.g., the spectral property and the
imaginary time periodicity of the thermal Green functions.

In this paper, we study the quantum-mechanical ther-
mal Green functions based on NSM, in hope of giving a
step toward nonextensive thermal field theory. In particu-
lar, we use NSM with normalized q-expectation values [13],
which has recently been proposed to remedy some un-
familiar points contained in the former approach in ref-
erences [4,5]. We derive the closed analytic expressions
for the thermal Green functions in the real-time formal-
ism and discuss influence of the nonextensivity on their
properties.

We start our discussion with summarizing the basics
of NSM with normalized q-expectation values developed
in reference [13]. This formalism is based on Tsallis’ pos-
tulate for the entropy [4]:

Sq[ρ̂] = −
kB

q − 1
Tr(ρ̂q − ρ̂), (1)

where q is a constant which is referred to as the Tsallis in-
dex and ρ̂ is the normalized density operator. kB is Boltz-
mann’s constant which is henceforth set equal to unity.
In the limit q → 1, Sq[ρ̂] converges on the Shannon-von
Neumann entropy: S[ρ̂] = −Tr(ρ̂ ln ρ̂). Regarding the en-
tropic nature of Sq[ρ̂], it has been shown that it satisfies
the concavity [4,5] and the generalized H-theorem [14]. In
contrast to the Shannon-von Neumann entropy, however,
the additivity is modified. Suppose a system be divided
into two independent subsystems whose density operators
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are given by ρ̂(1) and ρ̂(2), and the total density opera-
tor be the product ρ̂(1) ⊗ ρ̂(2). Then the Tsallis entropy
satisfies

Sq[ρ̂
(1) ⊗ ρ̂(2)]=Sq[ρ̂

(1)]+Sq[ρ̂
(2)]+(1−q)Sq[ρ̂

(1)]Sq[ρ̂
(2)].

(2)

Thus Sq[ρ̂] is subextensive (superextensive) for q > 1 (q <
1) and extensive only in the limit q → 1. The entropy
functional in equation (1) should be optimized under the
constraints regarding the normalization condition and the
normalized q-expectation values of the system Hamilto-
nian Ĥ and the total number operator N̂ :

Tr(ρ̂) = 1, (3)

〈Q̂〉q = Tr(P̂ Q̂) (Q̂ = Ĥ, N̂), (4)

where P̂ in equation (4) denotes the escort distribution
defined by [15]

P̂ =
ρ̂q

Tr(ρ̂q)
· (5)

Using the thermodynamic formalism for the entropy func-
tional Sq[ρ̂] under the constraints given in equations (3, 4),
the optimal density operator is found to be

ρ̂ =
1

Zq(β)

{
1− (1− q)(β/c)

×
[
Ĥ − µN̂ − (Uq − µNq)

]}1/(1−q)
, (6)

which describes a nonextensive grand canonical ensemble,
where

c = Tr(ρ̂q), (7)

Uq = 〈Ĥ〉q, (8)

Nq = 〈N̂〉q. (9)

β and µ are the inverse temperature and the chemical po-
tential, respectively. Zq(β) is the generalized grand parti-
tion function

Zq(β) = Tr
{

1− (1− q)(β/c)

×
[
Ĥ − µN̂ − (Uq − µNq)

]}1/(1−q)
. (10)

From equations (6, 7, 10), follows the identical relation

c = [Zq(β)]1−q. (11)

In the extensive limit q → 1, Zq(β) converges on the or-
dinary grand partition function:

Zq(β)→ Z1(β) ≡ Z(β) = Tr exp
[
−β(Ĥ − µN̂)

]
, (12)

provided that the prefactor exp [β(Uq − µNq)] has been
absorbed into the normalization of ρ̂ in this limit. Quite

remarkably it can be shown [13] that all of equilibrium
thermodynamic relations hold also in NSM in the analo-
gous forms.

In this paper, we restrict ourselves to the range of the
Tsallis index greater than unity

q > 1. (13)

This restriction allows us to use the Mellin transform
to express the density operator in a more analytically-
tractable exponential form:{

1 + (q − 1)(β/c)[Ĥ − µN̂ − (Uq − µNq)]
}−1/(q−1)

=
1

Γ (s)

∫ ∞
0

dσ σs−1 exp
(
− σ

{
1 + (β/sc)

× [Ĥ − µN̂ − (Uq − µNq)]
})

=
ss

Γ (s)

∫ ∞
0

dτ τs−1e−sτ exp
{
− τ(β/c)

× [Ĥ − µN̂ − (Uq − µNq)]
}
. (14)

Γ (s) in this equation is Euler’s gamma function and the
integration variable is changed as σ → τ = σ/s in the
second equality, where s is a positive constant given by

s =
1

q − 1
· (15)

From equation (14), formally follows the integral repre-
sentation of Zq(β) [16]

Zq(β) =
ss

Γ (s)

∫ ∞
0

dτ τs−1

× exp {−[s− (β/c)(Uq − µNq)]τ}Z(τβ/c), (16)

which manifestly shows how the generalized grand par-
tition function is related to the ordinary grand partition
function. We note that to derive this relation the order
of the integration and the trace operation is assumed to
be commutative. Accordingly care has to be taken to the
range of s for convergence of the integral: the range may
depend on the system, in general. For later convenience,
here we also present the Mellin transform of ρ̂q

ρ̂q =
ss

[Zq(β)]1+1/sΓ (s)

∫ ∞
0

dτ τs

× exp {−[s− (β/c)(Uq − µNq)]τ}

× exp[−τ(β/c)(Ĥ − µN̂)]. (17)

Let us consider as a simple system the harmonic oscil-
lator with a frequency ω and a unit mass, which can be
regarded as a single-mode scalar field. The normal-ordered
Hamiltonian reads (~ ≡ 1)

Ĥ = ωâ†â, (18)

where â† and â are respectively the creation and anni-
hilation operators at initial time t = 0 and satisfy the
commutation relations: [â, â] = [â†, â†] = 0, [â, â†] = 1.
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The position and momentum operators at t = 0, x̂0 and
p̂0 are given in terms of â† and â as x̂0 = (â† + â)/

√
2ω

and p̂0 = i(â† − â)/
√
ω/2. The eigenvalues of Ĥ are

En = ωn (n = 0, 1, 2, . . . ). The chemical potential is ir-
relevant in the present case of a single particle and is set
equal to zero: µ = 0. The ordinary single-particle partition
function is

Z(β) =
1

1− e−βω
· (19)

On the other hand, the generalized partition function
Zq(β) in equation (10) is

Zq(β) =
∞∑
n=0

1

[1 + (β/sc)(ωn− Uq)]s

=

(
sc

βω

)s
ζ(s, a), (20)

where [17]

a =
sc

βω
−
Uq

ω
· (21)

ζ(s, a) in equation (20) is the Hurwitz zeta function [18],
which is defined by

ζ(s, a) =
∞∑
n=0

1

(a+ n)s
, (22)

provided that a+n 6= 0 for ∀n. In this representation, the
condition Re s > 1 has to be imposed, but it is possible
to extend to the cases of the other values of s (except
the singularity at s = 1) by analytic continuation. One
can also use equation (16) to calculate Zq(β) but finds
nothing but the integral representation of ζ(s, a).

Similarly, the generalized internal energy Uq is calcu-
lated as follows:

Uq =
ω

c
Tr(â†âρ̂q)

=
ω

c[Zq(β)]q

(
sc

βω

)s+1 ∞∑
n=0

n

(a+ n)s+1

= ω

(
s

βω

)s+1

c2s+1 [ζ(s, a)− aζ(s+ 1, a)] , (23)

where equation (11) has been used.
The quantity c can be calculated in two ways. One is

to use equations (11, 20). The other is to evaluate equa-
tion (7) directly. The former gives

c =

(
βω

s

)1/2

[ζ(s, a)]−1/2s, (24)

whereas the latter yields

c =

(
s

βω

)− s+1
2s+1 [

ζ(s+ 1, a)
]− 1

2s+1
. (25)

Equations (23, 24) [or (25)] determine Uq and c. The con-
sistency between equations (24, 25) leads to the equation
for a:

[ζ(s, a)]1+1/2s

ζ(s+ 1, a)
=

(
s

βω

)1/2

. (26)

In addition, substitution of equations (24, 25) into equa-
tion (23) gives rise to

ζ(s, a)

ζ(s+ 1, a)
=

sc

βω
· (27)

Furthermore, from equations (26, 27), follows:

ζ(s, a) = c−2s

(
βω

s

)s
. (28)

It is generically a numerical problem to solve equa-
tions (23) and (24) [or, (25-28)] with respect to Uq and c.

Now we proceed to study the thermal Green functions
within the framework of NSM. Let us define the general-
ized thermal Green functions as follows:

G+
q (t, t′ : β) = 〈x̂(t)x̂(t′)〉q, (29)

G−q (t, t′ : β) = 〈x̂(t′)x̂(t)〉q. (30)

Here x̂(t) is the position operator of the particle in the
Heisenberg picture and equations (4, 5) are employed for
the normalized q-expectation values.

First we consider the spectral function. Using equa-
tions (29, 30), it is given by

ρq(k0 : β) =

∫ ∞
−∞

d(t− t′)eik0(t−t′)

× [G+
q (t, t′ : β)−G−q (t, t′ : β)], (31)

provided that the temporal translational invariance is as-
sumed, i.e., G±q (t, t′ : β) = G±q (t − t′ : β). Note that the

combination G+
q (t, t′ : β) − G−q (t, t′ : β) appearing in the

integrand is given by the normalized q-expectation value of
[x̂(t), x̂(t′)]. In the present case of the harmonic oscillator
(corresponding to the unperturbed field in perturbative
thermal field theory), this commutator is nothing but a
c-number. In fact, the position operator in the Heisenberg

picture, x̂(t) = eiĤtx̂0e−iĤt = x̂0 cos(ωt) + (p̂0/ω) sin(ωt),
gives [x̂(t), x̂(t′)] = (1/iω) sin[ω(t − t′)]. Therefore the
spectral function is explicitly given by

ρ(k0) = 2πε(k0)δ(k2
0 − ω

2) (32)

with ε(k0) = −1 (k0 < 0),+1 (k0 > 0), which obviously
carries no information on the thermal effects. That is, the
spectral properties are the same for the system at zero
temperature states, Boltzmann-Gibbs thermal states, and
thermal states in NSM.

Next we evaluate G±q (t, t′ : β) analytically. Using equa-
tion (17) with µ = 0, equations (29, 30) can collectively
be expressed as

G±q (t, t′ : β) =
ssc2s+1

βs+1Γ (s)

∫ ∞
0

dλλse−ωaλZ(λ)G±(t, t′ : λ),

(33)
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where a is given in equation (21) and the change is
made for the integration variable as τ → λ = τβ/c.
G±(t, t′ : β = λ) appearing in the integrand are the ordi-
nary real-time thermal Green functions calculated using

the ordinary thermal density operator ρ̂ = e−βĤ/Z(β).
Explicitly, they are given by

G±(t, t′ : β) =
1

2ω

[
e±iω(t−t′)

eβω − 1
+

e∓iω(t−t′)

1− e−βω

]
, (34)

which manifestly satisfy the celebrated Kubo-Martin-
Schwinger condition [1]

G+(t, t′ : β) = G−(t+ iβ, t′ : β). (35)

Substituting equation (34) into equation (33), we have

G±q (t, t′ : β) =
ssc2s+1

2ωβs+1Γ (s)

×

[
e±iω(t−t′)

∫ ∞
0

dλλse−λ(a+1)ω 1

(1− e−λω)2

+ e∓iω(t−t′)

∫ ∞
0

dλλse−λaω
1

(1− e−λω)2

]
=
c2s+1

2ω

(
s

βω

)s+1

×

[
e±iω(t−t′)

∞∑
m,n=0

1

(a+ 1 +m+ n)s+1

+ e∓iω(t−t′)
∞∑

m,n=0

1

(a+m+ n)s+1

]
.

(36)

From the formulas (b > 0)

ζ(s, b+ 1) = ζ(s, b)− b−s, (37)
∞∑

m,n=0

1

(b+m+ n)s
= ζ(s− 1, b) + (1− b)ζ(s, b), (38)

which can respectively be derived using equation (22) and
the Mellin transform, we obtain the following expressions
for the generalized thermal Green functions:

G±q (t, t′ : β) =
c2s+1

2ω

(
s

βω

)s+1

×
{

[ζ(s, a)− aζ(s+ 1, a)]e±iω(t−t′)

+ [ζ(s, a) + (1− a)ζ(s + 1, a)] e∓iω(t−t′)
}

=
1

2ω

{[
ζ(s, a)

ζ(s+ 1, a)
− a

]
e±iω(t−t′)

+

[
ζ(s, a)

ζ(s+ 1, a)
− a+ 1

]
e∓iω(t−t′)

}
·

(39)

These expressions are to be compared with equation (34).
The Kubo-Martin-Schwinger condition is no longer sat-
isfied by G±q (t, t′ : β). This is a very result of the non-
exponential form of the density operator in NSM. From
equations (21, 27), we see that the factors appearing in
the square brackets in equation (39) can be rewritten as

ζ(s, a)

ζ(s+ 1, a)
− a =

Uq

ω
= 〈â†â〉q, (40)

ζ(s, a)

ζ(s+ 1, a)
− a+ 1 = 〈ââ†〉q, (41)

which are natural nonextensive generalizations of the
Planck factors 1/(eβω − 1) and 1/(1 − e−βω) in equa-
tion (34), respectively.

Finally let us also calculate the generalized time-
ordered thermal propagator, which is defined by

Dq(t, t
′ : β)=θ(t − t′)G+

q (t, t′ : β) + θ(t′ − t)G−q (t, t′ : β),

(42)

where θ(t) = 0 (t < 0), 1 (t > 0). Like in equation (33),
this function is also related to the ordinary thermal propa-
gator in Boltzmann-Gibbs statistical mechanics as follows:

Dq(t, t
′ : β) =

ssc2s+1

βs+1Γ (s)

∫ ∞
0

dλλse−ωaλZ(λ)D(t, t′ : λ).

(43)

The Fourier transform of D(t, t′ : β) has been discussed by
Dolan and Jackiw [19] in the context of ordinary thermal
field theory. In the present mechanical case, it is given
by [1]

D̃(k0 : β) =

∫ ∞
−∞

d(t− t′)eik0(t−t′)D(t, t′ : β)

=
i

k2
0 − ω

2 + iε
+

2π

eβω − 1
δ(k2

0 − ω
2), (44)

where ε is an infinitesimal positive constant. Substituting
this equation into the Fourier transform of equation (42),
we find the following generalized thermal propagator:

D̃(k0 : β) =
i

k2
0 − ω

2 + iε

+ 2π

[
ζ(s, a)

ζ(s+ 1, a)
− a

]
δ(k2

0 − ω
2). (45)

From this, we conclude that the effect of the nonextensiv-
ity is relevant only at the “on-shell” states k0 = ±ω. The
behavior of the function f(s, a) = ζ(s, a)/ζ(s+ 1, a)−a is
shown in Figure 1. It is seen that this factor monotonically
decreases with respect to s at fixed a. Therefore, for the
strong nonextensivity [i.e., a large (small) value of q (s)],
the thermal effect becomes enhanced.

To summarize, within the framework of nonexten-
sive quantum statistical mechanics with normalized q-
expectation values, we have presented the closed analytic
expressions of the thermal Green functions of the har-
monic oscillator in terms of the Hurwitz zeta function.
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Fig. 1. Plots of f(s, a) = ζ(s, a)/ζ(s + 1, a) − a with respect
to a for s = 1.5, 2, 3. All quantities are dimensionless.

It is found that the finite-temperature contribution to the
time-ordered thermal propagator is present only at the
on-shell states and becomes enhanced for the strong
nonextensivity.

Note added in proof

Quite recently, the following two works have come to the
author’s attention. One is reference [20], which discusses a
role of the Hurwitz zeta function in NSM. The other [21]
considers the thermal Green functions in NSM, but no
explicit formulas are given to them. Both of these works
are based on NSM with unnormalized q-expectation values
and their physical scopes are different from the present
work’s.

The author would like to express his sincere thanks to Professor
Constantino Tsallis for illuminating discussions. He also thanks
Dr R.S. Johal and Dr U. T1rnakl1 for correspondence.
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Büyükk1l1ç, D. Demirhan, Eur. Phys. J. B 2, 101 (1998);
A.B. Pinheiro, I. Roditi, Phys. Lett. A 242, 296 (1998);
R.S. Johal, Phys. Rev. E 58, 4147 (1998).

12. http://tsallis.cat.cbpf.br/biblio.htm

13. C. Tsallis, R.S. Mendes, A.R. Plastino, Physica A 261,
534 (1998).

14. A.M. Mariz, Phys. Lett. A 165, 409 (1992); J.D. Ramshaw,
Phys. Lett. A 175, 169 (1993).
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